Previous Up Next

5.8.12 Complementary error function: erfc

The complementary error function is defined by

erfc(x)=
2
π
+∞


x
et2dt=1−erf(x)

Hence erfc(0)=1, since

+∞


0
et2dt=
π
2

The erfc command computes the complementary error function.

Examples.


Remark.
The relation between erfc and normal_cdf (see Section ‍8.4.7) is:

normal_cdf(x) =1−
1
2
erfc (
x
2
)

Check:
Input:

normal_cdf(1.0)

Output:

0.841344746069

Previous Up Next